Slide15.JPG

Slide16.JPG
Slide17.JPG
Slide18.JPG

Go Ad-free

Transcript

Ex 12.1, 10 Evaluate the Given limit: lim┬(zβ†’1) (𝑧^(1/3) βˆ’ 1)/(𝑧^(1/6) βˆ’ 1) lim┬(zβ†’1) (𝑧^(1/3) βˆ’ 1)/(𝑧^(1/6) βˆ’ 1) = (γ€–(1)γ€—^(1/3) βˆ’ 1)/(γ€–(1)γ€—^(1/6) βˆ’ 1) = (1 βˆ’ 1)/(1 βˆ’ 1) = 0/0 Since it is form 0/0, We can solve it by using (π‘™π‘–π‘š)┬(π‘₯β†’π‘Ž) (π‘₯^𝑛 βˆ’ π‘Ž^𝑛)/(π‘₯ βˆ’ π‘Ž) = nan – 1 Hence, lim┬(zβ†’1) (𝑧^(1/3) βˆ’ 1)/(𝑧^(1/6) βˆ’ 1) = lim┬(zβ†’1) 𝑧^(1/3) – 1 Γ· lim┬(zβ†’1) 𝑧^(1/6) βˆ’ 1 = lim┬(zβ†’1) 𝑧^(1/3) – γ€–(1)γ€—^(1/3) Γ· lim┬(zβ†’1) 𝑧^(1/6) – γ€–(1)γ€—^(1/6) Multiplying and dividing by z – 1 = lim┬(zβ†’1) (𝑧^(1/3) βˆ’ γ€–(1)γ€—^(1/3))/(𝑧 βˆ’ 1) Γ· lim┬(zβ†’1) (𝑧^(1/6) βˆ’γ€– (1)γ€—^(1/6))/(𝑧 βˆ’ 1) Using (π‘™π‘–π‘š)┬(π‘₯β†’π‘Ž) ( π‘₯^𝑛 βˆ’ π‘Ž^𝑛)/(π‘₯ βˆ’ π‘Ž) = nan – 1 lim┬(zβ†’1) (𝑧^(1/3) βˆ’ γ€–(1)γ€—^(1/3))/(𝑧 βˆ’1) = 1/3 γ€–(1)γ€—^(1/3 βˆ’ 1) = 1/3 Γ— 1 = 1/3 lim┬(zβ†’1) (𝑧^(1/6) βˆ’ γ€–(1)γ€—^(1/6))/(𝑧 βˆ’1) = 1/6 γ€–(1)γ€—^(1/6 βˆ’ 1) = 1/6 Γ— 1 = 1/6 Hence our equation becomes = lim┬(zβ†’1) (𝑧^(1/3) βˆ’ γ€–(1)γ€—^(1/3))/(𝑧 βˆ’ 1) Γ· lim┬(zβ†’1) (𝑧^(1/6) βˆ’ 6)/(𝑧 βˆ’ 1) = 1/3 Γ·1/6 = 1/3 Γ— 6/1 = 2

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo